The Age of Living Female Gray Whales (*Eschrichtius robustus*), Estimated from Photographic Identification Data Sergio Martínez, ¹⁻² Steve Swartz, ² Jorge Urban, ¹⁻² Alejandro Gómez-Gallardo, ¹⁻² and Hiram Rosales ¹⁻² ¹ Programa de Investigación de Mamíferos Marinos. Universidad Autónoma de Baja California Sur (UABCS), La Paz, B.C.S., México E-mail: smartinez@uabcs.mx ² Laguna San Ignacio Ecosystem Science Program (LSIESP), Darnestown, MD, USA #### **Abstract** The minimum ages of breeding female gray whales (*Eschrichtius robustus*) were determined from photographs obtained during the periods from 1977-1983 (Jones & Swartz), from 1996-2000, 2003 (Urban et al.), and from 2005-2016 (LSIESP/UABCS). Recaptures (matches) of individual whales were used to estimate their minimum ages as the number of years from the time of the earliest photograph to the most recent. Photographs of 18 "re-captured" whales, confirmed 17 female and one presumed male gray whale minimum ages ranging from 26 to 47 years, and confirm that these females are continuing to reproduce and visit Laguna San Ignacio with their new calves almost each winter. These are the oldest photographic identification data for any living gray whales, clearly demonstrating the fidelity of breeding female gray whales to Laguna San Ignacio, and underscore the value of long-term photographic identification based research. **Key words**: gray whale, photographic-identification, minimum age, breeding lagoons, fidelity ## Introduction Estimating the age of mysticete cetaceans is difficult owing to their longevity and oceanic natural history. Most estimates of age are inferred from the size distribution of harvested whales (Berta et al. 2005; Sumich 2014), whaling artifacts found embedded in harvested whales (George & Bockstoce 2008), and the number of growth layers in the wax earplugs of dead mysticetes (Blokhin & Tiupeleyev 1987). Rice and Wolman estimated the age of harvested female gray whales from the number of corpora albicantia in their ovaries, assuming that the average pregnancy rate is 2-years and produces one corpora albicantia, plus the average age of 8 years for the onset of sexual maturity (Rice & Wolman 1971). The oldest female gray whale they examined had 34 corpora albicantia and was estimated to be 76 years old (34 corpora x 2 = 68 years + 8 years to sexual maturity = 76 years). Here we report estimates of minimum age for living reproducing female gray whales from the analysis of photographic identification data (Photo-ID) obtained in the winter aggregation areas and breeding lagoons (Laguna San Ignacio, Laguna Ojo de Liebre and Bahía Magdalena) in Baja California Sur, Mexico during the whales' winter reproductive seasons from 1977 to 2016. ## Methods The distinctive and individually unique markings and scars on the backs of gray whales make them excellent subjects for Photo-ID based research because these features persist and are recognizable over long periods of time (Jones 1990). Photographs of gray whales obtained on their winter breeding areas of Baja California, Mexico (Figure 1) during three time periods were compared. The earliest photographs were collected in Laguna San Ignacio by Jones and Swartz (1984) from 1977 to 1983 and included 83 right side and 74 left side images. These were compared with 2,812 right side images obtained in Laguna San Ignacio and Laguna Ojo de Liebre from 1996 to 2000 and 2003 by researchers from the Programa de Investigación de Mamíferos Marinos of the Universidad Autónoma de Baja California Sur (UABCS) and 6,852 right side images and 5,003 left side images obtained in the three breeding areas from 2005 to 2016 by researchers from the Laguna San Ignacio Ecosystem Science Program (LSIESP/UABCS). **Figure 1**. Gray whale breeding areas in the Baja California Peninsula, Mexico: LOL - Laguna Ojo de Liebre, LSI – Laguna San Ignacio and BM – Bahía Magdalena The minimum age of individual whales were estimated as the number of years between the first year a whale was photographed and the year of the most recent photographic re-capture of that individual whale. If a whale was first photographed as a female with a calf, it was assumed that whale was at least 8-years old, and 8-years was added to the number of years between the first sighting and the most recent re-capture to account for the average number of years required for that female to attain sexual maturity and begin reproducing. #### **Results** The comparison of the 1977-1983 photographs from Laguna San Ignacio revealed matches or re-captures of 18 individual whales with photographs obtained between 1996 and the present. These included 17 breeding females and one whale that has been seen in six different years as a single whale (never photographed with a calf) and presumed to be a male (Table 1). Eleven individuals were first photographed as single whales during the period 1977-1983 and subsequently re-captured one or more times with a calf years later, indicating that these females had reached the age of sexual maturity during the period 1977-1996. And six more were seen with a calf since the first period (1977-1983). The estimated minimum ages for these re-captured whales ranged from 26 years to 47 years. # **Discussion** These estimates of gray whale ages are the oldest Photo-ID data for any living gray whales, and further demonstrate that natural occurring markings are a reliable way to identify individual gray whales over long periods of time. These results also confirm that some female gray whales demonstrate a fidelity to the Laguna San Ignacio winter aggregation and breeding area by returning to this breeding lagoon with their calves over many years. Rice & Wolman (1971) reported that the oldest breeding female gray whale they examined was 76 years old when she was killed. Our estimated age of living breeding females ranges from 26 to 47 years, proposing small that these living females are in the middle of their reproductive lives, and could be expected to live at least for another 20 to 30 years. Eleven of the 17 re-captured female whales were first photographed as single whales between 1977 and 1983, and then later photographed as females with calves, indicating that they attained reproductive maturity and began reproducing during the period 1977 to 1996. These findings confirm, and we concur with, the opinion of Jones (1990) that photographic identification based research provides a "unique opportunity" to estimate life history and reproductive parameters from living whales that include: calving interval; regional fidelity, duration of stay in a particular location, habitat use, and longevity. While photographic identification methods require non-lethal, non-invasive research over many years, photographic monitoring of living whales will continue to provide new information on the whales' behavior and reproductive biology throughout their lives. # Acknowledgements The authors wish to thank all of the research teams from the Laguna San Ignacio Ecosystem Science Program and the Programa de Investigación de Mamíferos Marinos, Universidad Autónoma de Baja California Sur, La Paz, B.C.S., Mexico that have participated over the years in the gray whale research within in Laguna San Ignacio. This research was supported by grants from The Ocean Foundation and the World Wildlife Fund-MX/Telcel Alliance, with in-kind support for logistics provided by Searcher Natural History Expeditions, and Kuyima Eco-Turismo, Inc. Field research was conducted under Scientific Research permits issued by the Secretaría de Pesca, Dirección General de Regulación Pesquera de México (1977-1983), and the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) of Mexico (1996-2016). ## **Literature Cited** - Berta, A., Sumich, J. and Kovacs, K.M. (2005). Marine Mammals: Evolutionary Biology; 2nd ed., Academic Press, San Diego, CA. - Blokhin, S.A. & Tiupeleyev, P.S. (1987). Morphological study of the earplugs of gray whales and the possibility of their use in age determination (SC/38/PS18). Report of the International Whaling Commission 37: 341-345. - George, J.C. & Bockstoce, J.R. (2008). Two historical weapon fragments as an aid to estimating the longevity and movements of bowhead whales. Polar Biology 31:751-754. - Jones, M.L. (1990). The reproductive cycle of gray whales based on photographic resightings of females on the breeding grounds from 1977-1982. (SC/A88/ID38). Report of the International Whaling Commission Special Issue 12: 177-182. Rice, D. W. & Wolman, A.A. (1971). The life history and ecology of the gray whale (Eschrichtius robustus). American Society of Mammalogy, special publication no. 3. 142 pp. Sumich, J. (2014). E. robustus; the biology and human history of gray whales. Whale Cove Marine Education, Corvallis, Oregon, USA. 199 pp. **Table 1.** Re-Captures (matches) of gray whales photographed from 1977 to 2016 in the winter aggregation areas and breeding lagoons of Laguna San Ignacio, Laguna Ojo de Liebre, and Bahía Magdalena. All matches were made with whales photographed in Laguna San Ignacio unless otherwise noted. Minimum ages of individual whales are estimated as the number of years between the first year a whale was photographed and the year of the most recent photographic recapture of that individual whale. Whales first photographed as a female with a calf were assumed to be at least 8-years old (average of sexual maturity), and 8-years was added to the number of years between the first sighting and the most recent photographic re-capture. S = single adult whale not accompanied by a calf; FC = adult female whale accompanied by a calf. | Match No. | Whale Image ID No. | Years
Photographed
(BM=Bahía
Magdalena;
LOL = Laguna
Ojo de Liebre) | Reproductive Status: S = single adult; FC = female & calf | Estimated Age /Years | |-----------|--------------------|--|---|----------------------| | 1 | SI800200-0008R | 1980 | S | | | | 06-0181-D-LSI-M | 2006 | FC | 26 | | 2 | SI820216-0038R | 1982 | S | | | | 10-0749-D-LSI-M | 2010 | FC | 28 | | 3 | SI780000-0122R | 1978 | S | | | | 96-0058-D-LSI-M | 1996 | FC | | | | 06-0023-D-LSI-M | 2006 | FC | 28 | | 4 | SI820222-0027R-CC | 1982 | FC | | | | 98-0057-D-LSI | 1998 | S | | | | 05-0014-D-LSI | 2005 | S | 23 + 8 = 31 | | 5 | SI820302-0039 | 1982 | S | | | | 15-0511-D-LSI-M | 2015 | FC | | | | 15-0097-D-BM-M | 2015 (BM) | FC | 33 | | 6 | SI810322-0020R | 1981 | S | | | | 14-0001-D-LOL-M | 2014 (LOL) | FC | 33 | | 7 | SI810215-0022R | 1981 | S | | | | 05-0231-D-LSI-M | 2005 | FC | | |----|---------------------|-----------|----|--------------------| | | 12-0068-D-BM | 2012 (BM) | S | | | | 13-0011-D-BM-M | 2013 (BM) | FC | | | | 15-0089-D-LSI | 2015 | S | 34 | | 8 | SI790103-0061R-38 | 1979 | S | | | | SI800106-0093R-38 | 1980 | S | | | | SI810300-0001R-38 | 1981 | S | | | | 06-0021-D-LSI-M | 2006 | FC | | | | 14-0161-D-LSI | 2014 | S | 35 | | 9 | SI790103-0062R-41 | 1979 | S | | | | SI800000-0094R-41 | 1980 | S | | | | SI810200-0031R-41 | 1981 | S | | | | 11-0221-D-LSI | 2011 | S | | | | 13-0245-D-LSI | 2013 | S | | | | 14-0513-D-LSI | 2014 | S | 35 (presumed male) | | 10 | SI780000-0130R | 1978 | S | | | | 14-0708-D-LSI-M | 2014 | FC | 36 | | 11 | SI780000-0125L | 1978 | S | | | | 97-0236-D-LSI-M | 1997 | FC | | | | 98-0369-D-LSI | 1998 | S | | | | 07-0124-D-LSI-M | 2007 | FC | | | | 11-0002-D-LSI-M | 2011 | FC | | | | 13-0452-I-LSI-M | 2013 | FC | | | | 15-0317-D-LSI-M | 2015 | FC | 37 | | 12 | SI790125-0001-24 | 1979 | S | | | | SI800201-0003L-24 | 1980 | S | | | | SI810115-0001L-24 | 1981 | S | | | | SI820206-0001L-24 | 1982 | S | | | | 09-0360-D-LSI | 2009 | S | | | | 12-0247-D-LSI | 2012 | S | | | | 14-0720-D-LSI-M | 2014 | FC | | | | 16-0472-D-LSI-M | 2016 | FC | 37 | | 13 | SI780103-0001-34 | 1978 | S | | | | SI790000-0001CCL-34 | 1979 | FC | | | | SI800000-0088R-34 | 1980 | S | | | | 08-0128-D-LSI | 2008 | S | | | | 09-0685-D-LSI-M | 2009 | FC | 31 + 8 = 39 | | 14 | SI810218-0108LCC | 1981 | FC | | | | 10-0500-I-LSI | 2010 | S | | | | 12-0119-D-LSI-M | 2012 | FC | | | | 15-0421-D-LSI-M | 2015 | FC | 34 + 8 = 42 | | 15 | SI800000-0004R-CC | 1980 | FC | | | | 96-0133-D-LSI-M | 1996 | FC | | | | 99-0270-D-LSI | 1999 | S | | | | 11-0160-D-LSI | 2011 | S | | | | | | | | Female Gray whale's Age from Photo-ID Data – In Press Aquatic Mammals 2016 | | 13-0394-D-LSI-M | 2013 | FC | | |----|----------------------|-----------|----|-------------| | | 15-0321-D-LSI-M | 2015 | FC | 35 + 8 = 43 | | 16 | SI790412-0001CCL-22 | 1979 | FC | | | | SI810219-0005CCL-22 | 1981 | FC | | | | SI820210-0006L-22 | 1982 | S | | | | 08-0188-I-LSI | 2008 | S | | | | 11-0537-D-LSI-M | 2011 | FC | | | | 14-0787-I-LSI-M | 2014 | FC | 35 + 8 = 43 | | 17 | SI780121-0001CCL-46 | 1978 | FC | | | | SI8301-0001L-46 | 1983 | S | | | | 08-0112-D-LSI-M | 2008 | FC | | | | 12-0040-D-LSI-M | 2012 | FC | | | | 13-0111-I-LSI | 2013 | S | | | | 14-0691-D-LSI-M | 2014 | FC | | | | 16-0521-D-LSI-M | 2016 | FC | 38 + 8 = 46 | | 18 | SI770400-0001CCL | 1977 | FC | | | | SI780122-0002 | 1978 | S | | | | SI790210-0002CCR | 1979 | FC | | | | SI800200-0005R | 1980 | S | | | | SI810119-0001CCR / L | 1981 | FC | | | | SI820210-0001R | 1982 | S | | | | SI830329-0001CCL | 1983 | FC | | | | 97-0320-D-LSI | 1997 | S | | | | 08-0089-D-LSI-M | 2008 | FC | | | | 10-0658-D-LSI | 2010 | S | | | | 12-0445-D-LSI | 2012 | S | | | | 13-0376-D-LSI-M | 2013 | FC | | | | 15-0192-D-LSI | 2015 | S | | | | 16-0087-D-BM | 2016 (BM) | S | 39 + 8 = 47 | | | | | | |