International Whaling Commission Scientific Committee Annual Meeting 2022 Paper Submission – Conservation Management Plans

Update on the Eastern North Pacific Gray Whale (*Eschrichtius robustus*) 2019-2022 Unusual Mortality Event

Deborah Fauquier¹, Stephen Raverty², Paul Cottrell³, Sean MacConnachie⁴, Jorge Urban R.⁵, Lorena Viloria-Gómora⁵, Sergio Martínez-Aguilar⁵, Steven Swartz⁶, Jessica L. Huggins⁷, Jim Rice⁸, Barbie Halaska⁹, Moe Flannery¹⁰, Kerri Danil¹¹, Kate Savage¹², Michael Garner¹³, Pádraig Duignan⁹, Kathy Burek Huntington¹⁴, David Weller¹¹, Joshua Stewart¹¹, Kathi Lefebvre¹⁵, Frances Gulland¹⁶, Tracey Goldstein¹⁷, John Calambokidis⁷, Sue Moore¹⁸, P. Dawn Goley¹⁹, Allison Lui¹⁹, Jason Baker²⁰, Kristin Wilkinson²¹, Justin Viezbicke²², Justin Greenman²², Mandy Keogh¹², Denise Greig^{1,10}, Sarah Wilkin¹, Teresa Rowles¹

Affiliations:

ABSTRACT

From 17 December 2018 through 06 April 2022, a total of ~534 stranded Eastern North Pacific gray whales (*Eschrichtius robustus*) were documented along the Pacific coast across three countries (Canada, Mexico, and United States). Two hundred and fourteen whales were reported in 2019, (including two whales from December 2018), 172 in 2020, 114 in 2021, and 32 in 2022 as of 06 April (Table 1, Figures 1, 2). Along the west coast of the United States, the 122 stranded

¹National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, 20910, USA

²Animal Health Center, Ministry of Agriculture, Abbotsford, British Columbia, V3G 2M2, Canada

³Department of Fisheries and Oceans Canada, Fisheries Management and Sustainability, Pacific Region, Vancouver, British Columbia, V6C 3S4, Canada

⁴Department of Fisheries and Oceans Canada, Science Branch, Pacific Region, Nanaimo, British Columbia, V9T 6N7, Canada

⁵Autonomous University of Baja California Sur, La Paz, Baja California Sur, 23080, México

⁶Laguna San Ignacio Ecosystem Science Program, Mexico

⁷Cascadia Research Collective, Olympia, Washington, 98501, USA

⁸Oregon State University, Newport, Oregon, 97365, USA

⁹The Marine Mammal Center, Sausalito, California, 94965, USA

¹⁰California Academy of Sciences, San Francisco, California, 94118, USA

¹¹National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, California, 92037, USA

¹²National Marine Fisheries Service, Alaska Regional Fisheries Office, Juneau, Alaska, 99801, USA

¹³Northwest ZooPath, Monroe, Washington, 98272, USA

¹⁴Alaska Veterinary Pathology Services, Eagle River, Alaska, 99577, USA

¹⁵Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA

¹⁶Karen C. Drayer Wildlife Health Center and One Health Institute, University of California, Davis, School of Veterinary Medicine, Davis, California, 95616, USA

¹⁷Zoological Pathology Program University of Illinois at Urbana-Champaign Brookfield, IL 60513

¹⁸Center for Ecosystem Sentinels, University of Washington, Seattle, Washington, 98195, USA

¹⁹California State Polytechnic University, Humboldt, Arcata, California, 95521, USA

²⁰National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, Hawaii, 96818, USA

²¹National Marine Fisheries Service, West Coast Regional Fisheries Office, Seattle, Washington, 98115, USA

²²National Marine Fisheries Service, West Coast Regional Fisheries Office, Long Beach, California, 90202, USA

whales reported in 2019, 79 in 2020, and 54 in 2021 were above the annual mean stranding rate of 29 ± 10 whales calculated between 2001-2018 (Table 2, Figure 3). Strandings occurred along the entire range of the Eastern North Pacific gray whale, including breeding, migratory, and feeding areas (Figure 2, Tables 1, 2), with most U.S. whales documented in spring and early summer when gray whales are near the end of their seasonal fast (Figure 3).

The recent abundance estimate of the Eastern North Pacific gray whale population showed a ~24% decrease between 2016 and 2020, which spans the Unusual Mortality Event (UME; Stewart and Weller 2021a). Total calf production in 2021 was estimated at 380 individuals (95% CI 296 – 493) and is among the lowest calf production estimates on record (Stewart and Weller 2021b). Two of the three recorded periods of low calf production have coincided with UMEs, the 1999-2000 UME and the current event. This suggests that the factors driving or mediating gray whale fecundity and mortality rates may be similar. Photogrammetry of live gray whales in Mexico from 2017 through 2019, demonstrated significantly lower body condition in whales in 2018 and 2019 compared to 2017 (Christiansen *et al.* 2021). Depending upon the age class of the whales, this lower body condition may have led to delayed reproduction and lower calf counts, and/or reduced survival in thin whales.

Preliminary results have not identified a primary cause of the gray whale UME. It is likely that the event may be multifactorial, including some mortality linked to killer whale predation, entanglements and vessel strikes, and to poor body condition possibly associated with ecosystem changes in sub-Arctic and Arctic feeding areas (Moore et al. 2022). Partial or complete necropsy examinations conducted in 2019 on a subset of stranded whales found evidence of poor to thin body condition, killer whale predation, and/or human interactions (Raverty et al. 2020). Similar findings were documented in 2020 and 2021, with additional analyses of necropsy data in progress. Between 2019 and 2021, tissue samples from 25 whales tested negative by PCR for morbilliviruses, Influenza viruses, and coronaviruses. Samples (i.e., feces, stomach contents, intestinal contents) from 48 whales were tested by ELISA for biotoxins including domoic acid and/or saxitoxin. For domoic acid, 83% of whales (38/46) had detectable concentrations including 7% (3/46) with high (>1000 ng/ml), 2% (1/46) with moderate (164 ng/ml), 74% (34/46) with low (<100 ng/ml) and 17% (8/46) with no detectable concentrations. For saxitoxin, 29% of whales (10/35) had detectable concentrations including 6% (2/35) with moderate (113 & 373 ng/g), 23% (8/35) with low (<100 ng/g) and 71% (25/35) with no detectable concentrations. Currently the toxic thresholds and kinetics of biotoxins are not well known in cetaceans (Lefebvre et al. 2016, Danil et al. 2021, Fire et al. 2021). Due to decomposition, histology of likely target organs (brain, heart) was not available for these animals, although histologic lesions associated with biotoxin exposure in cetaceans are limited (Broadwater et al. 2018).

For current data, please refer to: https://www.fisheries.noaa.gov/national/marine-life-distress/2019-2022-gray-whale-unusual-mortality-event-along-west-coast-and

Table 1: Eastern North Pacific gray whale strandings by country from December 17, 2018, through April 6, 2022.

Country	2019*	2020	2021	2022	Total
Canada	11	5	5	0	21
US	122	79	54	7	262
Mexico	83	88	55	25	251
Total	216	172	114	32	534

^{*}includes 2 whales that stranded in Mexico in December 2018

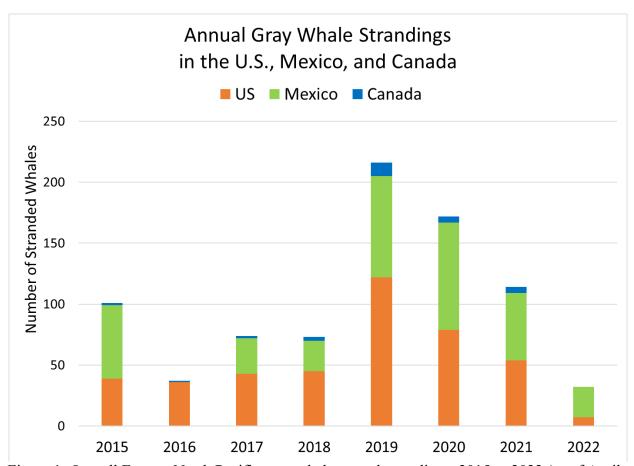


Figure 1: Overall Eastern North Pacific gray whale annual strandings, 2015 to 2022 (as of April 6, 2022) in the U.S., Mexico, and Canada

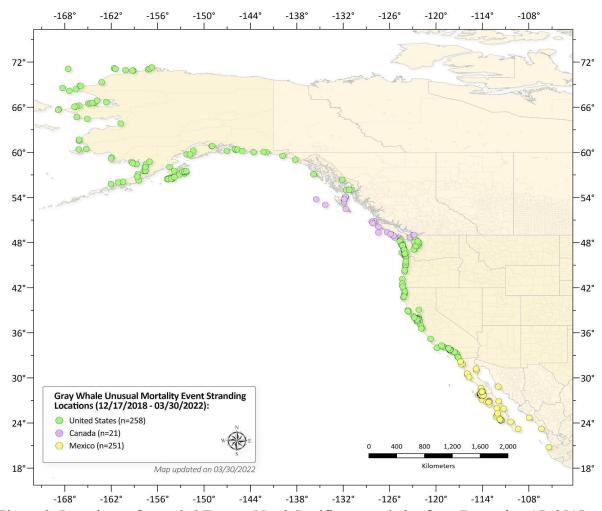


Figure 2: Locations of stranded Eastern North Pacific gray whales from December 17, 2018, through March 30, 2022

Table 2: Eastern North Pacific gray whale strandings by U.S. state from January 1, 2019, through April 6, 2022

U.S. State	2019	2020	2021	2022
Alaska	48	45	23	0
Washington	34	13	9	4
Oregon	6	3	3	0
California	34	18	19	3
Total	122	79	54	7

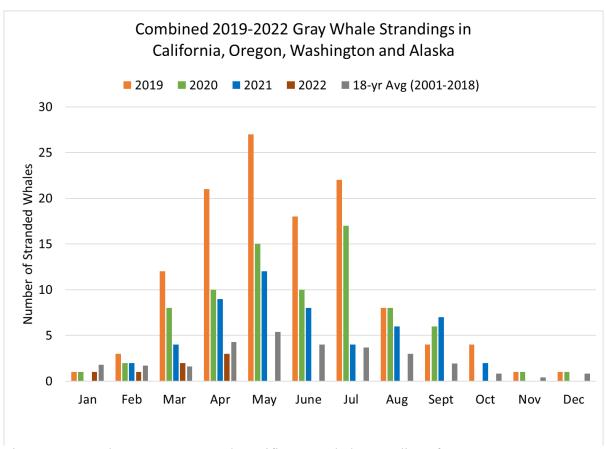


Figure 3: Annual U.S. Eastern North Pacific gray whale strandings from January 1, 2019, through April 6, 2022, compared to 18-year average (2001-2018).

ACKNOWLEDGEMENTS

The authors wish to acknowledge those people that contributed to the gray whale response, data and sample collection, and sample analyses including the staff and volunteers of the Alaska Department of Fish and Game, Alaska SeaLife Center, Alaska Veterinary Pathology Services, Alaska Whale Foundation, Autonomous University of Baja California Sur, Bureau of Ocean Energy Management, California Academy of Sciences, California Wildlife Center, Cascadia Research Collective, Channel Islands Cetacean Research Unit, Channel Islands Marine Wildlife Institute, Department of Fisheries and Oceans Canada, Exportadora de Sal S.A., CONANP, México, Feiro Marine Life Center, Humboldt State University, Laguna San Ignacio Ecosystem Science Program, Makah Tribe, Marine Animal Rescue, Moss Landing Marine Laboratories, National Marine Fisheries Service Alaska Fisheries Science Center, National Marine Fisheries Service Northwest Fisheries Science Center, National Marine Fisheries Service Southwest Fisheries Science Center, National Park Service, Natural History Museum of Los Angeles County, North Slope Borough, North Coast Marine Mammal Center, Orca Network, Oregon State University, Pacific Marine Mammal Care Center, Port Townsend Marine Science Center, Portland State University, Red de Varamientos SOMEMMA, Mexico, SeaWorld California, Sitka Science, Sun'aq Tribe, The Marine Mammal Center, University of Alaska, Anchorage, University of Alaska, Fairbanks, University of California, Davis, University of California, Santa Cruz, University of Illinois, University of Washington, Washington Department of Fish and Wildlife, The Whale Museum, World Vets.

REFERENCES

Broadwater, M.H., Van Dolah, F.M., and Fire, S.E. (2018). Vulnerabilities of marine mammals to harmful algal blooms. In: Shumway SE, Burkholder JM, Morton SL, editors. Harmful Algal Blooms. Chichester, UK: John Wiley & Sons, Ltd, pp. 191–222.

Christiansen, F., Rodríguez-González, F., Martínez-Aguilar, S., Urbán, J., Swartz, S., Warick, H., Vivier, F. and Bejder, L. (2021). Poor body condition associated with an unusual mortality event in gray whales. Marine Ecology Progress Series 658:237-252.

Danil, K., Berman, M., Frame, E., Preti, A., Fire, S. E., Leighfield, T., Carretta, J., Carter, M. L., and Lefebvre, K. (2021). Marine algal toxins and their vectors in southern California cetaceans. Harmful algae, 103, 102000.

Fire, S.E, Bogomolni, A., DiGiovanni, R.A., Jr., Early, G., Leighfield, T.A., Matassa K., et al. (2021). An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine mammals from the U.S. New England coast. PLoS ONE 16(1): e0243570.

Lefebvre, K.A., Quakenbush, L., Frame E., Burek Huntington, K., Sheffield, G., Stimmelmayr, R., et al. (2016). Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae, 55: 13–24.

Moore, S.E., Clarke, J.T., Okkonen, S.R., Grebmeier, J.M., Berchok, C.L., and Stafford, K.M. (2022). Changes in gray whale phenology and distribution related to prey variability and ocean biophysics in the northern Bering and eastern Chukchi seas. PLoS ONE, 17(4): e0265934.

Raverty, S., Duignan, P., Greig, J., Huggins, J., Burek, K., Garner, M., Calambokidis, J., Cottrell, P., Danil, K., D'Alessandro, D., Duffield, D., Flannery, M., Gulland, F., Halaska, B., King, C., Lambourn, D., Lenhart, T., Urban Ramirez, J., Rowles, T., Rice, J., Savage, K. Wilkinson, K. and Fauquier, D. (2020). Post mortem findings of a 2019 gray whale Unusual Mortality Event in the Eastern North pacific. Report to the International Whaling Commission, SC/68B/IST/05.

Stewart, J.D. and Weller, D.W. (2021a). Abundance of Eastern North Pacific gray whales 2-19/2020. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-639.

Stewart, J.D., and Weller, D.W. (2021b). Estimates of eastern North Pacific gray whale calf production 1994-2021. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-653.